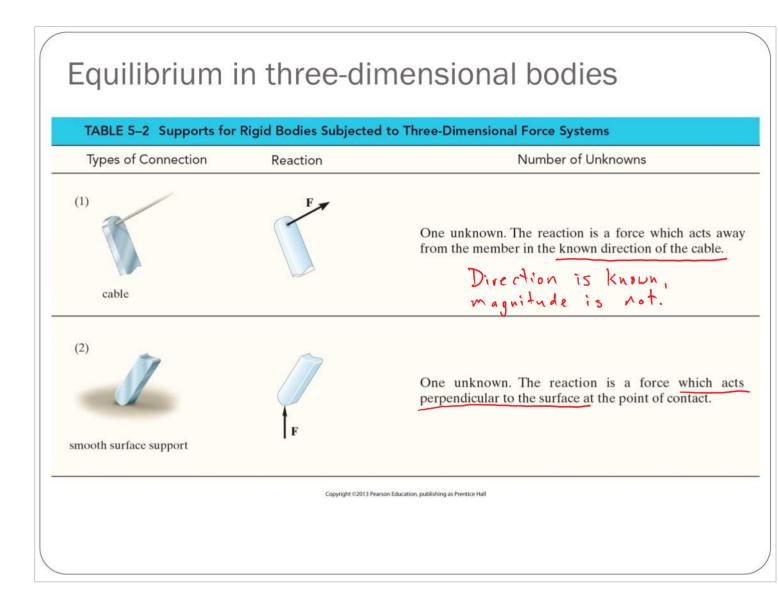
Two marbles, which of radius R and weight W_{A} , are placed inside D a hollow thin-walled tube of diameter D. Note that D < 4R, so that only one marble touches the floor. Find the minimum weight W of the tube such that it will not turn over. All surfaces W_T FBD of tube The first and the instance when $F_L = F_R$ is the instance when $F_L = F_R$ is begins to tip over. Note: No horizontal reaction at O. W Step 1. Find O. See that I GB = 2R $\mathcal{L}_{Ab} = 2R \cdot \hat{\mathcal{V}}_{AB} = 2R \cdot (\cos \theta \hat{\tau} + \sin \theta \hat{j})$ Geometry. Relate R & D + + + R 2Rcost R ZRÛM \Rightarrow 2R+2Rcos $\theta = D$ $2R(1 + \cos \theta) = D = \cos \theta = \frac{D}{2R} - 1 = \frac{D-2R}{2R}$ solved for cost. We might need $\sin \theta \& \tan \theta$. $\cos \theta = \frac{a d j}{h \gamma p} = \frac{D - 2R}{2R}$ $\frac{2R}{\sqrt{(2R)^2 - (D-2R)^2}}$ $\sin \theta = \sqrt{4RD - D^2}$ $f_{an}\theta = \frac{\sin\theta}{\cos\theta} = \frac{\sqrt{4RD-D^2}}{D_{12}B}$ FBD of tube Apply equilibrium equs:

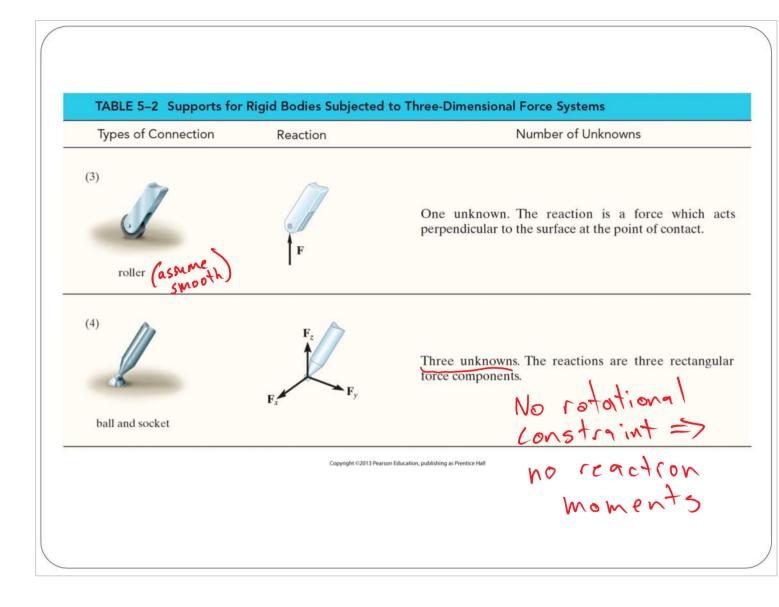
$$\frac{2R \sin \theta}{2R \sin \theta} = W_{n} \sin \theta + \tan \theta$$

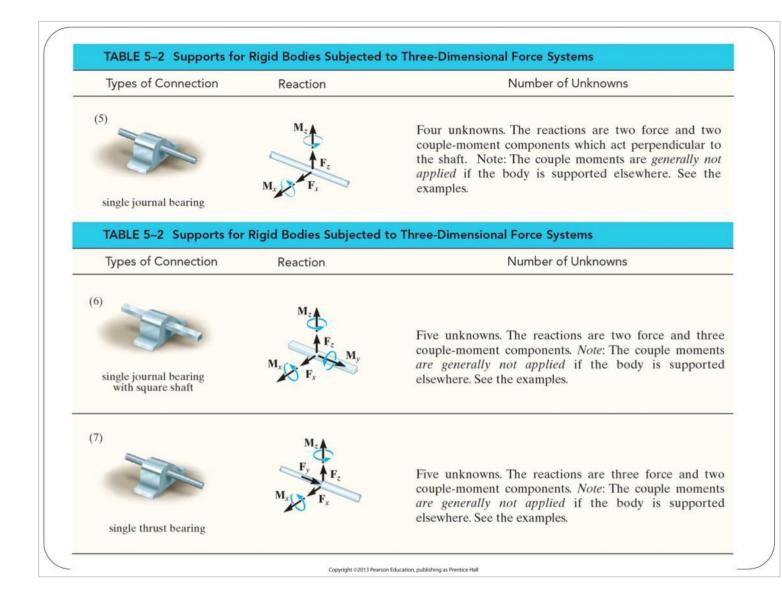
$$\frac{\sin \theta}{\sin \theta} = \frac{\sin \theta}{D - 2R}$$

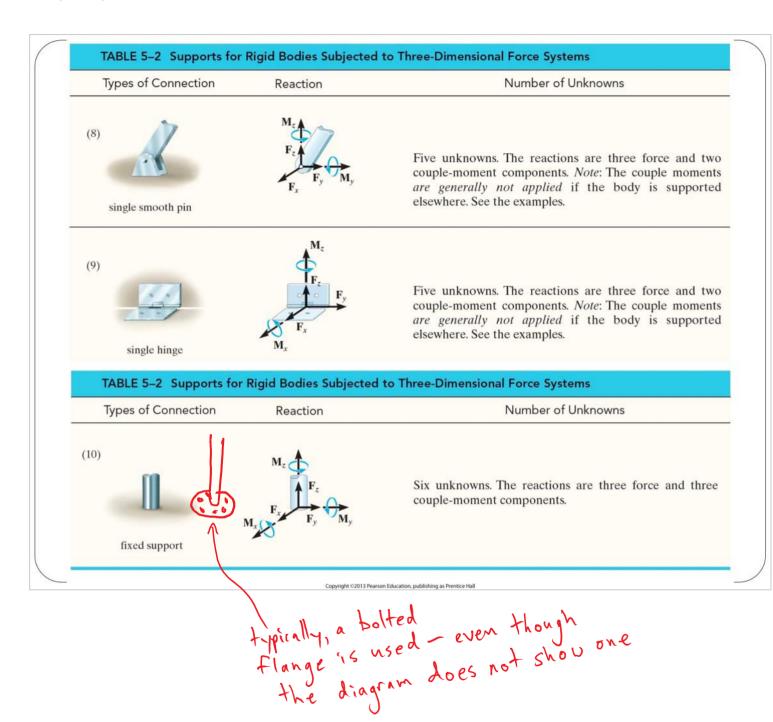
$$\frac{1}{2} = \frac{W_{n}}{2} + \frac{1}{2} + \frac$$



Page 22







Page 25

Page 26

